

# Available online at www.sciencedirect.com







# Nitrogen release from a NO<sub>x</sub> storage and reduction catalyst

R.G. Tonkyn\*, R.S. Disselkamp, C.H.F. Peden

Institute for Interfacial Catalysis, Pacific Northwest National Laboratory, P.O. Box 999, MS K8-88, Richland, WA 99352, USA

Available online 27 March 2006

#### Abstract

In a NO<sub>x</sub> storage and reduction (NSR) catalyst, the release and reduction of NO<sub>x</sub> occurs over a very short period. The speed of the NO<sub>x</sub> release and reduction creates difficulties in analyzing the chemistry using normal analytical techniques, which are typically better suited to slower, steady-state studies. We have investigated the time dependence of NO, NO<sub>2</sub>, NH<sub>3</sub>, N<sub>2</sub>O and N<sub>2</sub> released by an NSR catalyst using a combination of FT-IR and gas chromatographic techniques. Nitrogen was detected with the GC by using He rather than N<sub>2</sub> as the background gas. The FT-IR was used not only to monitor NO, NO<sub>2</sub>, NH<sub>3</sub> and N<sub>2</sub>O, but also to establish cycle-to-cycle reproducibility. Under these conditions we used the GC to sample the effluent at multiple times over many lean–rich cycles. To the extent that the chemistry was truly periodic and reproducible, we obtained the time dependence of the release of nitrogen after the lean-to-rich transition. Similar information was obtained for O<sub>2</sub>, H<sub>2</sub> and N<sub>2</sub>O. Combining the FT-IR and GC data, we obtained good cycle averaged nitrogen balances, indicating that all the major products were accounted for.

© 2006 Elsevier B.V. All rights reserved.

Keywords: NO<sub>x</sub> trap; Storage/reduction; Nitrogen balance; Lean-rich cycling; Diesel emissions

# 1. Introduction

Due to their inherently higher fuel efficiency, the expanded use of diesel engines in automobiles and light duty trucks would result in a significant reduction in CO<sub>2</sub> emissions [1]. Unfortunately it has proven quite a challenge to reduce the NO<sub>x</sub> emissions from diesel engines to acceptable levels. The strongly oxidative environment of lean-burn engine exhaust is a difficult one in which to chemically reduce NO and NO<sub>2</sub> to N<sub>2</sub>. One promising approach is the use of  $NO_x$  storage and reduction (NSR) catalysts, often also called lean-NO<sub>x</sub> trap (LNT) catalysts [2–4]. These catalysts very efficiently store  $NO_x$  under lean conditions, typically as a nitrate. Under rich conditions, the nitrate is readily reduced to N<sub>2</sub> leaving the catalyst ready to store NO<sub>x</sub> again once lean conditions are reestablished. One strategy for utilizing the NSR approach is to periodically operate the engine under both lean (i.e., excess oxygen) and rich (i.e., excess fuel) conditions. The lean operation period should be much longer than the rich one in order to take advantage of the natural "lean-burn" condition of a diesel engine.

The lean–rich cycling times are dictated by the lean cycle  $NO_x$  storage capacity and the rich cycle reduction rate. Careful optimization of the timing and length of the rich period will be necessary in order to minimize the fuel penalty while maintaining the requisite  $NO_x$  conversion efficiency. In practice the engine management will likely be very complicated, given the wide range of operating conditions to be expected for everyday driving. One important piece of information is the time evolution of nitrogen-containing species during the lean and especially the rich cycle. How this depends on variables such as the temperature, reductant identity, humidity,  $CO_2$  concentration, and the space velocity is vital information required to develop any engine management strategy.

During the rich cycle, there is a very short burst of activity accompanied by large composition changes that make the chemistry difficult to follow. Furthermore, because nitrogen is the majority species in air, it is virtually impossible to detect and quantify  $N_2$  formation during ordinary operation. Generally, nitrogen formation is inferred by the loss of  $NO_x$  and the inability to detect other logical nitrogen-containing products [5–7]. However, this type of inference is not completely satisfying, and gives little or no time-dependent information. Our approach to this problem is to synthesize simplified synthetic exhaust in which He has replaced atmospheric  $N_2$ . In addition, we take advantage of the periodic nature of NSR catalyst operation to sample the exhaust gases at many points

<sup>\*</sup> Corresponding author. Tel.: +1 509 376 8817; fax: +1 509 376 6066. E-mail address: rg.tonkyn@pnl.gov (R.G. Tonkyn).

over a series of cycles. As long as the chemistry is truly periodic, under these conditions the time dependence of the formation of  $N_2$  can readily be established.

For the initial experiments reported here, we simplified the chemistry as much as possible, adding only  $NO_x$ ,  $H_2$  and  $O_2$  to the background He flow. As has been pointed out [8], the lack of  $CO_2$  and excess water is an unrealistic condition for diesel exhaust. However, both the storage and reduction chemistry of NSR catalysts is qualitatively, if not quantitatively, quite similar with or without these components. In future experiments, the effects of  $H_2O$  and  $CO_2$  will be examined.

## 2. Experimental

Our experimental apparatus contains a gas handling system. a temperature controlled quartz reactor containing our monolith catalyst, and an FT-IR and micro-GC for effluent gas analysis. The gas handling system uses pure or mixed gases (i.e., He,  $O_2$ , H<sub>2</sub>, and 0.5% NO or NO<sub>2</sub> in He) to form three separate gas streams, labeled the main, lean and rich flows. For the experiments described here, the main flow consisted of a fixed concentration of NO or NO<sub>2</sub> in helium. Other gases (e.g., CO<sub>2</sub>, SO<sub>2</sub>, and/or H<sub>2</sub>O) could be added to this flow as well, but were not included for our first experiments reported here. The lean and rich flows consisted of either oxygen or hydrogen mixed with helium at the appropriate concentration. Two computer controlled three-way solenoid valves were simultaneously switched such that one of these mixtures was added to the main flow upstream of the catalytic reactor while the other was directed to the exhaust. Therefore, during the rich period no oxygen was present and during the lean period no hydrogen was present. By using equal volumetric flow rates of the rich and lean gases, the inlet NO<sub>x</sub> concentration remained constant throughout the experiment. The gas manifold included a manual bypass valve used to set up and check the inlet gas concentrations.

Our catalytic reactor consisted of a 2.5 cm OD  $\times$  2.2 cm  $ID \times 40$  cm long quartz tube adapted to 0.64 cm diameter glass tubing on both the inlet and outlet ends. We added a coarse glass frit near the inlet end so that loosely packed glass beads could be inserted upstream of the catalyst to enhance gas mixing and temperature equilibration. The reactor's large open end was adapted to a threaded glass connector, and a threaded Teflon plug used to seal the reactor. The plug was removed to load or unload the catalyst, and had a centered, threaded hole used to insert a type-K thermocouple into the reactor right up against the downstream end of the catalyst. A small monolithic piece ( $\sim$ 2.1 cm diameter  $\times$  2.1 cm long,  $\sim$ 7 cm<sup>3</sup>) of a degreened (16 h in air at 700 °C in 10% H<sub>2</sub>O) commercial lean NO<sub>x</sub> trap catalyst manufactured by Umicore was sealed against the walls of the reactor by wrapping with fiberglass string and then placed near the outlet end of the reactor. The entire reactor was housed inside a 12 in. temperature programmable horizontal furnace (Lindberg/Blue). The furnace was temperature controlled using its own external thermocouple, but we report here the actual temperatures recorded inside the reactor at the outlet end of the catalyst.

The Umicore catalyst in many ways resembles a three-way catalyst with added barium for storage. This catalyst was supplied to us by Oak Ridge National Laboratory and is being used in several laboratories as a benchmark NSR catalyst. It contains the precious metals Pt, Pd and Rh (in descending quantities), added ceria and zirconia (for oxygen storage) and BaO for NO<sub>x</sub> storage. The barium loading is 20 wt.% as BaO on Al<sub>2</sub>O<sub>3</sub>, and the targeted precious metal loading was 100 g/ft.<sup>3</sup> of Pt/Pd/Rh in a 9:3:1 ratio.

After exiting the reactor, the gas flow was directed through mildly heated stainless steel tubing ( $\sim 50$  °C) to the FT-IR or the micro-GC for analysis. The FT-IR (Nicolet Magna 560) was equipped with a 2 m gas cell held at 50 °C and a liquid nitrogen cooled MCT detector. The gas cell had a volume of 200 cm<sup>3</sup>, which was equal to approximately 5 s of flow at 2 standard liters per minute. The ultimate time response of the FT-IR was therefore limited by the gas turnover time in the cell. We utilized the OMNIC software package to obtain and quantify spectra (2–3 scans at 0.5 cm<sup>-1</sup> resolution) every 3– 4 s. For most gases, we obtained standard calibration spectra on site using gas mixtures with known concentrations. For ammonia, we obtained a 1 ppm-meter standard spectrum, also taken at 50 °C, from the PNNL spectral library [9]. Based on calibration experiments using He dilution, we can say that the relative accuracy of our method is quite good. The absolute accuracy is harder to quantify due to the combined effects of errors in the calibration standards, the various flow rates, and any interference effects not correctly compensated for. However, the consistent and nearly complete nitrogen balances we obtained under a number of different conditions suggests the absolute accuracies were acceptable.

Our micro-GC (MTI analytical Quad series) was equipped with both a 10 m 5 Å molecular sieve column held at 60 °C and a 6 m Poroplot U column held at 50  $^{\circ}$ C. The former was used to detect H2, O2, and N2, while the latter was utilized to measure N<sub>2</sub>O. Under these conditions, approximately 65 s was required to elute all the gases present, which determined the shortest possible time between injections. Since the GC sampled the flow at only one instant during a cycle, it was necessary to control the lean-to-rich transition with respect to the GC injection over a series of identical cycles. This was accomplished by letting the GC free run at a predetermined injection rate and adjusting the lean-to-rich transition time accordingly. Although we did not control the injection time externally, we were able to record the injection time for comparison with the computer controlled lean-to-rich transition. By programming the total lean-rich cycle period to be slightly shorter than the GC repeat time, we were able to sample gas over the entire rich period. The number of sample points (i.e., lean-rich cycles) required to measure through the entire rich period was determined by the length of the rich period in combination with the difference between the leanrich cycle time and the GC repeat time. Once we knew the transit time from the solenoid valve to the GC inlet (approximately 6 s) we could adjust the initial parameters such that the first few injections sampled gas from late in the lean period, with each subsequent injection falling relatively later in the cycle. With enough lean–rich cycles, we were able to then sample across the entire rich period and beyond. Assuming consistent cycle-to-cycle chemistry, the time resolution using this method was determined by the step size we chose. As a matter of practicality we chose time-steps of 0.3 s for the shortest rich periods, increasing to 2 s for the longest periods.

A typical experiment was run as follows. By bypassing the catalyst, the inlet  $NO_x$  concentration for both the rich and lean flow mixtures was determined. The gas was then passed over the catalyst and a series of lean-rich cycles were run. Using the FT-IR to make nearly real-time measurements of the NO, NO<sub>2</sub>, N<sub>2</sub>O, H<sub>2</sub>O and NH<sub>3</sub> concentrations, we waited until reproducible lean-rich cycles were obtained, which typically took between 10 and 60 min. We had to wait until both the chemistry and the temperature stabilized, since a significant amount of heat was evolved during the rich period. If necessary, the furnace set point was adjusted to obtain the desired temperature. Once we were satisfied that the chemistry and temperature were stable, we bypassed the FT-IR and began the GC experiments. The first few injections were timed to sample gas late in the lean period, and typically showed only  $O_2$ . Eventually the GC sampled gas from the rich phase, and  $N_2$ and N2O appeared as oxygen disappeared. In longer rich cycles, we detected NH3 and H2 as well. The data were collected over the entire rich period and into the start of the following lean period. We quantified the data by comparing the N<sub>2</sub> detected by the GC with the other species measured on the FT-IR during one cycle just prior to the beginning of the GC experiments.

Unless otherwise noted, our experimental conditions were as follows. The total flow was two standard liters per minute over a 7 cm<sup>3</sup> coated catalyst brick for a calculated gas-hourly space velocity of  $\sim$ 17 000 h<sup>-1</sup>. The input NO<sub>x</sub> concentration was fixed at 280 ppm of NO during both cycles. Lean flow included 4% oxygen, while rich flow contained 1.3% hydrogen. The catalyst temperature was between 250 and 260 °C.

#### 3. Results and discussion

#### 3.1. Chemistry under 'steady-state' rich conditions

The operation of an NSR catalyst requires that the majority of the time  $NO_x$  is simply stored, with all the important  $NO_x$  reduction chemistry occurring during a very short rich period. As a starting point, the 'steady-state' chemistry of the catalyst under rich conditions is of interest. Because the catalyst formulation can be described as a typical "three-way" catalyst with additional BaO for  $NO_x$  storage capacity, this period can be regarded as steady-state "three-way"-like  $NO_x$  reduction. With our simplified gas mixture the result is straightforward. At 255 °C, once all the stored  $NO_x$  and oxygen has been depleted,  $NO_x$  reduces  $NO_x$  in the input gas to both  $NO_x$  of input  $NO_x$  of input

forming  $NH_3$  and  $N_2$  can be written in balanced form as follows:

$$NO + (5/2)H_2 \Leftrightarrow NH_3 + H_2O \tag{1}$$

$$2NO + 2H_2 \Leftrightarrow N_2 + 2H_2O \tag{2}$$

Since the second reaction requires two NO molecules to react while the first only one, we ran a series of experiments measuring the steady-state N<sub>2</sub> and NH<sub>3</sub> concentrations for a range of NO concentrations between 80 and 1100 ppm. For these experiments the H<sub>2</sub> concentration was fixed at 1.3%. We observed no change in the NH<sub>3</sub>:N<sub>2</sub> branching ratio, which remained at 3:1 over the entire range. Apparently whatever change in the NO surface coverage occurred over this concentration range had no effect on the relative reaction rates. While it is possible that this range of NO concentrations was insufficient to significantly alter the 'steady-state' catalyst surface concentrations, another plausible explanation is that the two reactions occur on different sites (e.g. Pt versus Rh or Pd) and are therefore independent of each other.

We ran a single experiment at 270 ppm input  $NO_x$  as  $NO_2$  rather than NO. The result was very similar. At 253 °C, we detected only  $N_2$ ,  $NH_3$  and water. In this case, we measured 70% conversion of  $NO_2$  to  $NH_3$ , with the remainder forming  $N_2$ . The measured water was twice the inlet  $NO_2$  concentration, as expected. Again the nitrogen balance was excellent.

# 3.2. Chemistry under lean conditions

In Fig. 1 we show a single, long lean period taken after the stored  $NO_x$  from prior lean periods had been fully removed by reduction with  $H_2$ . As soon as we switched to lean conditions,  $NH_3$  disappeared, and no gas-phase N-containing species were observed for approximately 20 min. Eventually NO broke through the catalyst, reached a maximum at about the time  $NO_2$  appeared, and then declined back to a nearly constant value. Qualitatively similar  $NO_x$  breakthrough curves have been reported elsewhere [10–12]. The long-term  $NO_x$  breakthrough

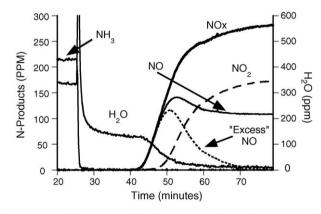
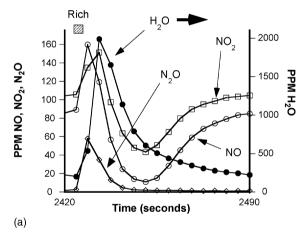



Fig. 1. N-containing products (left axis) and water (right axis) observed during a long lean period. The input gas composition was  $4\%~O_2, 270~ppm$  NO with the balance He. The catalyst out temperature was  $255~^{\circ}\text{C}.$  The reactor was pretreated with a rich feed of  $1.3\%~H_2, 270~ppm$  NO and balance He. The "excess" NO represents NO out in excess of the amount predicted by the steady-state ratio of NO to  $NO_2.$ 

simply reflects NO oxidation kinetics on the precious metals in the catalyst as the NO<sub>x</sub> storage capacity of the NSR is reached [13,14]. No steady-state NO<sub>x</sub> conversion was observed under lean conditions. At 255 °C and with 4% oxygen, thermodynamic equilibrium favors more NO2 than we observe, so this must be considered a 'steady-state' rather than equilibrium condition, and the rate of NO oxidation kinetically controlling under these conditions. We note that within this lean cycle, the H<sub>2</sub>O concentration dropped to a nearly steady value until NO started to break through the catalyst. At this point, the H<sub>2</sub>O concentration dropped fairly rapidly to zero. The concentration of H<sub>2</sub>O was approximately one half that of the input NO for the bulk of the time that NO<sub>x</sub> was completely removed from the inlet stream via storage. This result suggests that H<sub>2</sub>O, not present in the input gas mixtures, was displaced from barium storage sites that were converted to Ba(OH)<sub>2</sub> rather than BaO during the long period of soaking in  $H_2 + NO_2$ . The water dropped to zero at about the same time NO appeared, consistent with NO production as the last step of  $NO_x$  storage.

Our  $NO_x$  adsorption data is consistent with the stepwise adsorption of  $NO_2$  at the barium sites, with the final process being an oxidation by  $NO_2$  that releases NO. The overall stoichiometry for  $NO_2$  storage has been suggested to be the following [11,15,16]:

$$(1/2)O_2 + NO + Pt \Leftrightarrow NO_2 + Pt$$
 (3)


$$3NO_2 + BaO \Leftrightarrow Ba(NO_3)_2 + NO$$
 (4)

Our data is consistent with this process. The input NO is oxidized to NO<sub>2</sub> at a precious metal site, but the reverse reaction is interrupted by rapid adsorption of NO<sub>2</sub> at Ba containing storage sites. Initially, any NO regenerated by the last adsorption step is re-oxidized and taken up further down the catalyst bed. As the catalyst fills up, the final adsorption step occurs closer to the catalyst outlet, until eventually NO escapes. We observe a "burst" of NO out which settles down as the storage sites are completely filled. From the data shown, we calculate the storage capacity of our catalyst under these conditions to be  $\sim$ 650  $\mu$ mol of NO<sub>x</sub>, or  $\sim$ 90 mol/m<sup>3</sup>. Of course this value will likely vary with changes in reaction conditions such as temperature, gas composition, space velocity and the like. The storage capacity has been reported to drop with the addition of  $H_2O$  and  $CO_2$ , although the general form of the  $NO_x$  adsorption trace is still quite similar [8,11]. In Fig. 1, we include a trace showing the amount of NO in excess of the steady-state amount expected, as calculated from the NO<sub>2</sub> trace and the final steadystate ratio of NO to NO<sub>2</sub>. Integration of this trace indicates the excess NO released amounts to  $\sim 20\%$  of the NO<sub>x</sub> stored. The fact that this is less than predicted by Eq. (4) above is consistent with the idea that much of the NO initially formed near the front is re-oxidized and reused further down the catalyst. An alternative hypothesis is that the lower than predicted NO recovered indicates the presence of two types of storage sites, one of which requires NO<sub>2</sub> for the final oxidation to Ba(NO<sub>3</sub>)<sub>2</sub>, and one of which can store  $NO_2$  as a nitrate using  $O_2$  as the oxidant [11]. The latter sites would not produce any product NO. Our data cannot distinguish these possibilities.

The exact same experiment run with 270 ppm  $NO_2$  rather than NO yielded very similar results. After reaching 'steady-state' under rich conditions, switching to lean flow caused complete storage of all input  $NO_2$  for  $\sim$ 20 min. The first  $NO_x$  out was in the form of NO, but NO peaked as  $NO_2$  appeared, and the final condition reflected the concentrations of  $NO_2$  and NO obtained by the reverse NO oxidation reaction on the precious metal. In this case, we had more  $NO_2$  than predicted by thermodynamics, again indicating that the reactions are not fast enough to reach equilibrium at 17 000 h<sup>-1</sup> over what is likely at least partially oxidized precious-metal catalyst components.

## 3.3. Short rich period

In Fig. 2a, we show FT-IR data taken over one full cycle (67 + 3 s, lean + rich) after the system had been allowed to stabilize for 35 min with the reproducibility of the FT-IR data verified for several lean–rich cycles. As mentioned above, due to the volume of the FT-IR cell the inherent time resolution of the data is significantly longer than the actual rich period in this case. At the end of the previous lean period (left edge of the figure) both NO and NO<sub>2</sub> were present in significant amounts. Upon switching to the rich feed, we observed an immediate pulse of NO and N<sub>2</sub>O, a pulse of NO<sub>2</sub> noticeably delayed in



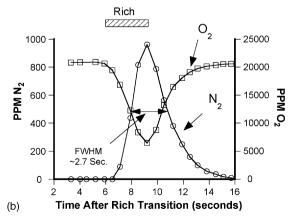
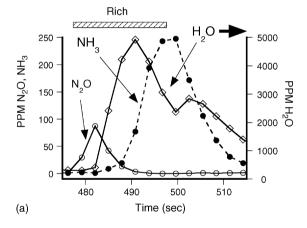



Fig. 2. Products detected by FT-IR (a) and GC (b) for a lean/rich cycle of 67/3 s. The box labeled Rich at the top of each plot represents the width of the rich period. Rich flow:  $1.3\%~H_2,~270~ppm$  NO, balance He. Lean flow:  $4\%~O_2,~270~ppm$  NO, balance He.

time from the NO and  $N_2O$  ones, and a quite large burst of  $H_2O$  perhaps even further delayed in time. Neither the NO nor the  $NO_2$  concentrations dropped to zero at any point during the cycle. Despite the evident saturation of the  $NO_x$  storage capacity, the release of the majority of  $NO_x$  during the lean period as  $NO_2$  indicates that NO oxidation was still occurring. Both  $H_2O$  and  $NO_2$  would be expected to adsorb more strongly to the catalyst (and tubing walls), which might at least partially explain their later appearance. The delayed appearance could also result from a slower formation step and/or different precursors, thus reflecting aspects of the reaction mechanisms during the rich phase—aspects we will explore further in future experiments.

Once the FT-IR indicated that reproducible lean-rich cycles had been attained, we began sampling the flow with the gas chromatograph. The resulting measurement of O2 and N2 is shown in Fig. 2b, with each set of two data points at a particular time obtained from a single lean-rich cycle. As can be seen, the excellent time resolution and smooth rise and fall of detected N<sub>2</sub> is another indication that the chemistry was stable over many cycles. The width of the N<sub>2</sub> signal is consistent with a 3 s rich period, with the somewhat slow decay due to a slow sweeping out of nitrogen from the catalyst volume. We note that in the lean mix the oxygen signal was saturated due to the high sensitivity scale of the GC detector required to detect N2 that was, of course, present at much lower concentrations. However as the oxygen concentration fell, it did drop into the linear response region. Over a 3 s rich cycle oxygen never dropped completely to zero. In fact, even at its lowest concentration the oxygen concentration remained well in excess of the input NO<sub>x</sub>. Although the catalyst is expected to store some oxygen, this result is most likely due to a slow sweeping out of the catalyst. Experiments with added  $N_2$  in the rich feed (and no  $NO_x$  in the main feed) indicated that both N2 and O2 have similar time behavior when switched on and off and passed through the catalyst. Since we do not expect nitrogen to adsorb, we attribute the slow decay of oxygen mainly to mixing and diffusion effects. Any effect due to oxygen storage on ceria would probably be too subtle for us to measure under these conditions.

The raw data from both the FT-IR and GC experiments was integrated over the entire cycle (in units of ppm s) and the result converted to µmol utilizing the flow rate and the ideal gas law. Table 1 lists the results for 3 consecutive cycles, including the cycle shown in Fig. 2a. The steady-state nature of the chemistry is quite apparent, which gives us confidence that sampling the gas for the GC measurements at different points across many lean—rich cycles is a reasonable strategy. Table 1 also includes


Table 1 Products detected over consecutive cycles

|                         | #1   | #2   | #3   | % NO <sub>x</sub> |  |
|-------------------------|------|------|------|-------------------|--|
| NO (μmol)               | 5.7  | 5.7  | 5. 7 | 21                |  |
| NO <sub>2</sub> (μmol)  | 9.3  | 9.3  | 9.3  | 34                |  |
| N <sub>2</sub> O (μmol) | 0.84 | 0.84 | 0.84 | 6                 |  |
| Sum (µmol N)            | 16.7 | 16.7 | 16.7 | 61                |  |
| H <sub>2</sub> O (μmol) | 65   | 65   | 65   |                   |  |
| $N_2$ (µmol)            | 4.6  |      |      | 34                |  |
|                         |      |      |      |                   |  |

the measured  $N_2$ , which when combined with the FT-IR data indicates that  $\sim 95\%$  of the input N was recovered. However, only one third of the input  $NO_x$  was reduced to nitrogen under these conditions. The amount of water produced was significantly greater than possible for the reduction of  $NO_2$  to  $N_2$  and  $N_2O$  observed, meaning that most of the water was formed via  $H_2$  reduction of oxygen, probably stored on the ceria–zirconia component of the NSR catalyst.

# 3.4. Long rich period

Fig. 3 shows a similar set of FT-IR(a) and GC(b) data for the case of a 67–20 s lean–rich cycle. In this case NO and NO<sub>2</sub> are not plotted because no NO<sub>x</sub> was detected at any point during the lean–rich cycle. Upon switching to rich conditions, on the FT-IR we observed an immediate pulse of N<sub>2</sub>O followed by a distinctly slower appearance of H<sub>2</sub>O, and after 10 s or so, the appearance of NH<sub>3</sub> as well. On the GC, upon switching to rich conditions we saw a rapid rise and fall of N<sub>2</sub>, with an FWHM of  $\sim$ 5 s. The nitrogen signal leveled off to a small but non-zero value, consistent with our discussion above concerning 'steady-state' "three-way"-like catalysis. Fig. 3b also shows that approximately 10 s into the rich cycle oxygen essentially disappeared and hydrogen appeared. Comparing the GC and FT-IR traces we



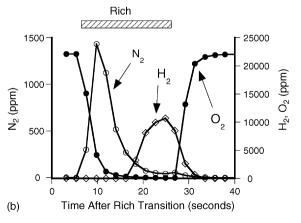
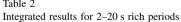
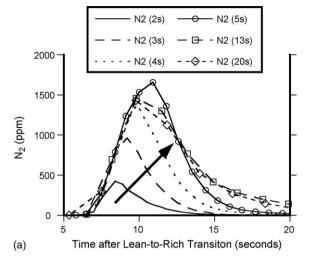



Fig. 3. Products detected by FT-IR (a) and GC (b) for a lean/rich cycle of 67/ 20 s. The box labeled rich at the top of each plot represents the width of the rich period. Rich flow: 1.3% H<sub>2</sub>, 270 ppm NO, balance He. Lean flow: 4% O<sub>2</sub>, 270 ppm NO, balance He.


note that the  $\rm H_2$  and  $\rm NH_3$  signals were very similar. Both products appeared after gas-phase oxygen was gone, and rose toward their 'steady-state' values until the switch back to lean conditions occurred. We also note that a large amount of  $\rm H_2O$  was produced as long as excess oxygen was present. The  $\rm H_2O$  concentration peaked approximately 10 s into the rich cycle, then dropped smoothly until the beginning of the subsequent lean period. At that point a small upward spike in the  $\rm H_2O$  signal was observed, presumably due to the reaction of  $\rm O_2$  with  $\rm H_2$  left over on the catalyst from the rich flow.

Evidently  $N_2O$  and  $N_2$  are formed immediately after the leanto-rich transition and are the primary N-containing products from stored  $NO_x$ . The formation of  $NH_3$  occurred later, presumably from reactions of the input NO with  $H_2$  on precious metal sites after gas-phase oxygen was gone. The absolute concentration of  $N_2$  observed confirms that it arises from stored  $NO_x$ . However, the  $N_2O$  concentrations are low enough that we cannot determine from our data whether the production of  $N_2O$  involved only stored  $NO_x$ . In the future we plan to determine the effect, if any, that varying the concentration of  $NO_x$  in the rich phase has on the production of  $N_2O$  and  $N_2$ .


#### 3.5. Varying the rich period

We ran a series of experiments in precisely the same manner, but with varying rich periods. We collected data for a 67-s lean period followed by rich periods ranging from 2 to 20 s. Fig. 4a shows the GC-measured  $N_2$  production data for selected rich periods, and Fig. 4b summarizes the entire data set in terms of %  $NO_x$  conversion. Table 2 contains the detailed results illustrated in Fig. 4b. In the table we define the "%  $NO_x$  conversion" as the net loss of  $NO_x$ , regardless of the product formed.

Our results can be summarized as follows. As the rich period increased from 2 to 6 s, the amount of  $NO_x$  surviving the catalyst dropped rapidly to zero, where it remained for all longer rich period cycles. Over the same range the amount of  $N_2$  produced increased rapidly, and then leveled off, with essentially no further increase at rich times longer than  $\sim$ 5–6 s. The amount of  $N_2O$  went up from 2 to 5 s rich, and then was level or perhaps tailed off slightly over the rest of the range. Ammonia appeared at measurable levels only in cycles with 8 s or longer rich periods, and monotonically increased with the length of the rich period. We discuss the effects of the length of the rich period on the individual products below.



|                               | Seconds rich |     |     |     |     |     |     |     |     |     |  |
|-------------------------------|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
|                               | 2            | 3   | 4   | 5   | 6   | 7   | 8   | 10  | 13  | 20  |  |
| N <sub>2</sub> (μmol N out)   | 3.8          | 9.3 | 16  | 24  | 26  | 26  | 27  | 28  | 27  | 26  |  |
| NO (μmol out)                 | 9.3          | 6.6 | 3.7 | 0.3 | 0   | 0   | 0   | 0   | 0   | 0   |  |
| NO <sub>2</sub> (µmol out)    | 12           | 9.3 | 5.9 | 1   | 0.4 | 0.1 | 0   | 0   | 0   | 0   |  |
| N <sub>2</sub> O (μmol N out) | 1.1          | 1.7 | 2.4 | 3.0 | 2.8 | 2.2 | 2.4 | 2.1 | 2.2 | 1.8 |  |
| NH <sub>3</sub> (µmol out)    | 0.1          | 0.1 | 0.1 | 0   | 0.2 | 0.1 | 0.5 | 2.6 | 2.9 | 5.5 |  |
| % NO <sub>x</sub> conversion  | 25           | 45  | 67  | 95  | 99  | 100 | 100 | 100 | 100 | 100 |  |
| % N balance                   | 92           | 93  | 97  | 95  | 98  | 95  | 98  | 104 | 98  | 95  |  |
| H <sub>2</sub> O (μmol out)   | 48           | 65  | 78  | 91  | 103 | 114 | 125 | 145 | 146 | 182 |  |



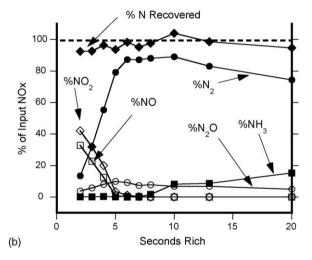



Fig. 4. Results for a series of lean/rich cycle times, with the lean period fixed at 67 s and the rich time varied from 2 to 20 s. (a) Shows the time dependence of  $N_2$  production for selected rich periods; (b) indicates the complete results for N-containing products.

# 3.6. Production of N<sub>2</sub>O

For most of the experiments described here, we utilized the FT-IR to analyze for N<sub>2</sub>O, which appeared to arise immediately upon addition of hydrogen. However since the FT-IR and the GC had significantly different inherent time responses, we ran

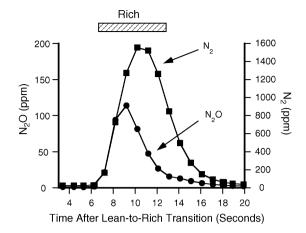



Fig. 5. Comparison of  $N_2$  and  $N_2O$  production during a 67/6 s lean/rich cycle. Both products were detected by GC. The box labeled Rich at the top the plot represents the width of the rich period. Rich flow: 1.3%  $H_2$ , 270 ppm NO, balance He. Lean flow: 4%  $O_2$ , 270 ppm NO, balance He.

one experiment where we measured  $N_2O$  using a second column in the GC. Fig. 5 shows the result for a 6 s rich/67 s lean cycle. Clearly  $N_2O$  is formed coincidently with  $N_2$  in the initial stage of the rich period, but is depleted much more quickly. Since the time behavior of  $N_2O$  and NO as measured by the FT-IR were nearly identical, the same can be said for the pulse of NO detected when rich cycles were less than or equal to  $\sim$ 5–6 s. As we see in Table 2, although the NO signal dropped rapidly to zero for longer rich cycles, a small but persistent  $N_2O$  signal could not be avoided under these conditions. For longer rich cycles, the  $N_2O$  appearance was identical to that seen in shorter cycles, namely a short burst that appeared immediately after the lean-to-rich transition.

The rapid and evidently unavoidable appearance and disappearance of N<sub>2</sub>O suggests that, in every case, a relatively small fraction of the stored NO<sub>x</sub> is "primed" to form N<sub>2</sub>O once oxygen is removed. The fact that the N<sub>2</sub>O formation is at best only very weakly linked to the length of the rich period is consistent with it being formed on the precious metal rather than the  $NO_x$  storage sites. One plausible explanation is that as  $H_2$  rapidly cleanses O from Pt, the N + NO  $\Leftrightarrow$  N<sub>2</sub>O reaction occurs. At later times, the NO surface concentrations on the precious metals may be small compared to H-atom and N-atom concentrations so N2 and NH3 become the dominant Ncontaining products of  $NO_x$  reduction. We note that the amount of N<sub>2</sub>O formed never exceeds the amount of NO input during the rich cycle, so it is possible the NO required for the above reaction is NO(g) rather than NO from stored NO<sub>x</sub>, although this remains ambiguous pending further experiments.

# 3.7. Release of NOx

We only observed  $NO_x$  out after the lean-to-rich transition in cases where both NO and  $NO_2$  were also present at measurable concentrations during the lean phase. In every one of these cases,  $NO_x$  out was significant at all times during the cycle. Obviously in these cases, the rich period was too short to remove all of the stored  $NO_x$ . However, even immediately after the "partial" cleaning the

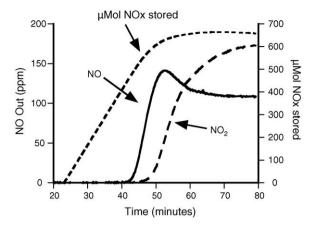



Fig. 6.  $NO_x$  out and  $NO_x$  stored vs. time during a long lean period. This is taken from the same experimental data shown in Fig. 1. The input gas composition was  $4\% O_2$ , 270 ppm NO with the balance He. The reactor was pretreated with a rich feed of  $1.3\% H_2$ , 270 ppm NO and balance He.

catalyst was unable to take up all of the input  $NO_x$ . By the same token, whenever the rich period was long enough to 'clean' the catalyst of stored  $NO_x$ ,  $NO_x$  out was zero for the entire cycle.

In some sense, this NO<sub>x</sub> release behavior is a consequence of our experimental procedure. In particular, we waited until steady-state had been reached before collecting any of the cycle data shown. We began with a reduced catalyst and ran consecutive cycles until we reached consistent behavior for consecutive lean-rich cycles. Consider all cases where NO and NO<sub>2</sub> were observed during the lean cycle. Since the rich phase was too short to fully 'clean' the catalyst, each successive cycle left more and more NO<sub>x</sub> behind. This process continued until the lean NO<sub>x</sub> storage rate slowed down enough that the NO<sub>x</sub> removed during the rich phase equaled the amount stored during the lean stage. In Fig. 6 we show the long lean period data recast in terms of  $\mu$ mol of  $NO_x$  stored versus time. The rate of storage, or derivative of the trace, is constant right up until NO appears in the effluent, when it slows considerably. Whenever we studied conditions leading to a non-zero NO<sub>x</sub> output at the end of the lean period, we had a nearly full catalyst. In these cases, NO<sub>x</sub> storage was slow after switching back to lean flow because the catalyst was still quite full; therefore, NO and NO<sub>2</sub> appear immediately. While it would presumably be possible to construct a cycle which under steady-state conditions that included lean NO<sub>x</sub> breakthrough and full rich cycle cleaning, under the conditions illustrated in Fig. 6 the cycle time would be extremely long and, thus, experimentally impractical. Under other operating conditions (e.g., higher temperature, higher NO<sub>x</sub> concentration or lower catalyst loading), such a cycle might be more conveniently obtained and probed experimentally.

# 3.8. $N_2$ and $NH_3$ production

The traces shown in Fig. 4a make it immediately apparent those conditions that lead to optimum nitrogen production. The formation of nitrogen was obviously reductant limited up to rich cycles of 5 s or so. However, lengthening the rich period beyond 5

or 6 s did not significantly increase the amount of nitrogen produced, indicating that at the optimum point, the gas-phase concentration of reductant and the amount of stored NO<sub>x</sub> were well balanced. This result is valid only for the precise conditions we used. Varying the hydrogen concentration could conceivably change the rich time required for optimum NO<sub>x</sub> reduction, although we have not addressed that issue to date. The addition of H<sub>2</sub>O and CO<sub>2</sub> will doubtless change the optimum conditions as well. It is especially notable that the reduction of stored NO<sub>x</sub> yields primarily N<sub>2</sub>, with only small amounts of N<sub>2</sub>O formed. Importantly, ammonia was not observed at all during an optimized lean-rich cycle, but only appeared during very long rich periods. This implies that the H-atom surface concentrations on the precious metal are relatively small until the stored NO<sub>x</sub> is reduced. The appearance of NH<sub>3</sub> indicates no further gains can be obtained by further lengthening the rich period.

#### 4. Conclusions

The reduction of stored  $NO_x$  by  $H_2$  in a commercial NSR catalyst has been shown to produce mainly N2 with smaller quantities of N<sub>2</sub>O. For insufficiently long rich periods, the adsorbed NO<sub>x</sub> builds up until the lean-cycle NO<sub>x</sub> storage is drastically reduced, degrading the overall performance significantly. Under these conditions, the catalyst never fully removes stored NO<sub>x</sub>, and NO and NO<sub>2</sub> are observed throughout the entire lean–rich cycle. During overly long rich periods, NO<sub>x</sub> is never observed but, unfortunately, NH3 is. Compared to an optimized rich cycle length, similar amounts of N2 are produced early in the rich period, but its production drops off significantly once the stored NO<sub>x</sub> is depleted. The reduction of input NO takes place then and favors NH<sub>3</sub> production over N<sub>2</sub> production by a 3:1 margin over a wide range of NO concentrations. The appearance of ammonia is an excellent indication that nitrogen production from stored NO<sub>x</sub> is complete, and that the optimal rich period has been reached or exceeded. Importantly, the proper choice of the rich period length prevented the production of significant amounts of NH<sub>3</sub> altogether. Under our conditions, a small but noticeable amount of N<sub>2</sub>O was unavoidably produced.

#### Acknowledgments

We acknowledge the financial support from the U.S. Department of Energy (DOE), Office of Freedom Car and Vehicle Technologies. The experiments were performed in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The EMSL is a national scientific user facility and supported by the US DOE's Office of Biological and Environmental Research. PNNL is a multi-program national laboratory operated for the U.S. Department of Energy by Battelle Memorial Institute under contract number DE-AC06-76RLO 1830.

#### References

- R.M. Heck, R.J. Farrauto, Catalytic Air Pollution Control, Van Nostrund Reinhold, New York, 1995.
- [2] W. Bogner, M. Kramer, B. Krutzsch, S. Pischinger, D. Voigtlander, G. Wenninger, F. Wirbeleit, M.S. Brogan, R.J. Brisley, D.E. Webster, Appl. Catal. B: Environ. 7 (1995) 153.
- [3] N. Takahashi, H. Shinjoh, T. Iijima, T. Suziki, K. Yamazaki, K. Yokota, H. Suzuki, N. Niyoshi, S. Matsumoto, S. Tanizawa, S. Tanaka, T. Tateishi, K. Kashara, Catal. Today 27 (1996) 63.
- [4] W.S. Epling, L.E. Campbell, A. Yezerets, N.W. Currier, J.E. Parks, Catal. Rev. Sci. Eng. 46 (2004) 163.
- [5] E. Fridell, M. Skoglundh, B. Westerberg, S. Johansson, G. Smedler, J. Catal. 183 (1999) 196.
- [6] Z.O. Liu, J.A. Anderson, J. Catal. 224 (2004) 18.
- [7] K.S. Kabin, R.L. Muncrief, M.P. Harold, Catal. Today 96 (2004) 79.
- [8] W.S. Epling, G.C. Campbell, J.E. Parks, Catal. Lett. 90 (2003) 45.
- [9] S.W. Sharpe, T.J. Johnson, R.L. Sams, P.M. Chu, G.C. Rhoderick, P.A. Johnson, Appl. Spectrosc. 58 (2004) 1453.
- [10] P. Broqvist, H. Gronbeck, E. Fridell, I. Panas, Catal. Today 96 (2004)
- [11] W.S. Epling, J.E. Parks, G.C. Campbell, A. Yezerets, N.W. Currier, L.E. Campbell, Catal. Today 96 (2004) 21.
- [12] F. Prinetto, G. Ghiotti, I. Nova, L. Castoldi, L. Lietti, E. Tronconi, P. Forzatti, Phys. Chem. Chem. Phys. 5 (2003) 4428.
- [13] S.S. Mulla, N. Chen, W.N. Delgass, W.S. Epling, F.H. Ribeiro, Catal. Lett. 100 (2005) 267.
- [14] L. Olsson, B. Westerberg, H. Persson, E. Fridell, M. Skoglundh, B. Andersson, J. Phys. Chem. B 103 (1999) 10433.
- [15] N.W. Cant, M.J. Patterson, Catal. Today 73 (2002) 271.
- [16] J. Depres, M. Koebel, O. Krocher, M. Elsener, A. Wokaun, Appl. Catal. B: Environ. 43 (2003) 389.